162

INZHENERNO-FIZICHESKII ZHURNAL

THE PROCESSING OF EXPERIMENTAL RESULTS BY THE METHOD OF LEAST

SQUARES

S. P. Malyshenko

Inzhenerno-Fizicheskii Zhurnal, Vol. 14, No. 2, pp. 309-313, 1968

UDC 512.897

It is demonstrated that the processing of experimental results by the
method of least squares should be accomplished in various cases by

minimizing the sum of the squares of the relative deviations in the

estimates of the regression coefficients, rather than those of the ab-
solute deviations, as is usually the case.

In processing experimental results we frequently
use the method of least squares to smooth the exper-
imental data, to determine the relationship between a
certain measured quantity and another, etc.This meth-
od is a special case of the method of maximum prob-
ability, * provided the observations are distributed in
normal fashion [1].

Here, if it is only the dependent variables y;; that
are subject to random measurement errors, and if
yi, are not correlated, the problem of finding the
equation of the curve which best represents the ex-
perimental data for yj (x;) (the regression curve) re-
duces to a minimization of the quadratic form

M=

=

w; [ Y — i a, P, (xi)]2 (1)
=1
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[

with respect to the estimates of @) for the coefficient
of regression oy.

We assume that the theoretical relationship y = n(x)
can be expanded into a system of linear independent
functions Py(x) and that it is well apprcximated by a
sum of no more than m < n functions Py (x) over the
entire x interval:

1 (x) = 2 Op Pk (x)w
&=l

M contains the scattering of the observations about
. - m
the empirical curve n(x) = E a, P, (x), which is an
fe=1
estimate for the theoretical curve reduced to m terms.
Minimization of (1) with respect to a) leads to a
system of linear equations for ay

i G ap =Y, 2)
E'=I
where
G = 3, e o Per (2, ®
=1
and
Y, = S Py(x)o; yr ()

i

*We will use the terminology adopted in [1].

The solution for system (2) has the form
ay = Z G'Yws (5)
k=1

where G™! is the inverse matrix of the coefficients for
the system satisfying the equation

m
Y G Gt =8y (8= 1, 8y, = Owhenk £ ).

B'=1

If the orthogonal polynomials Ky (x) are taken as
Pk(x) so that

G = 2 Ky () o; K (%) = S s
i=1
then

Ay = 2 K, (x) 0 y;. (6)
=1

For the estimates of the variance of the regression
coefficients we can use the corresponding diagonal
elements o}, of the matrix

2 —1
Ower = 5° Gt
where

M

§% = .
n—m

(7

For the estimates of g, to be effective, we have to
choose m so that (7) is minimum [1]:

§* (m) = min,

The results (from the processing of the experimen-
tal data) and the possibility of interpreting these data
depend significantly on the weights ascribed to the in-
dividual measurements.

The weight of the measurement can be evaluated on
the basis of the observational data for the i-th group
from the mean, and it is a function of x.

If h; is a measure of the accuracy found in the i-th
group of measurements, then w; ~ hzi and h; ~ 1/Ay;,
where Ayj is the absolute measurement error, and the
last ratio is satisfied if Ay; ic understood to be the
probable, the mean, the mean square, or some other
characteristic error [8].

The absolute error Ay; can be expressed in terms
of the relative @; as Ayi = @j¥y» so that

o1
w; =& —5—5, (8)
$i Y:
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where £ is independent of x and can be omitted in the
following.

With consideration of (8), we can write relation-
ships (1) -(7) as follows:

1 m
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M, :2@1,.[1—_— a1, P (xi)] . (a2
=1 Y 4
m
2 Guar Qi =Yg, (2a)
k=1
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G = E 0y —5 Py (%) P (%), (32)
i=1 Yi
Q 1
Yie = )‘ Oy — Py (%), (4a)
i=1 b
e 1
Ay = 2 Gz Vi, (5a) .
k=1
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ayy = 2 0y —— K (%), (6a)
i=1 Yi
= £ G and = (72)
n—m
where
1
®1; =73
@:

In this notation the determination of the regression
curve reduces to the minimization of the sum of the
weighted squares of the relative deviations over the
estimate of ayy,.

In processing an extensive amount of experimental
material, we can save considerable work and time
by assuming the measurements to be equal in acc-
racy. This is the usual approach in processing the re-
sults of thermophysical experiments: the derivation
of the equations of state, the compilation of tables
for the thermophysical properties of matter, the de-
termination of virial coefficients, etc. [2-7]. In this
case the processing is carried out on the basis of
Egs. (1) =(7) with w; = 1. This would be correct if
the absolute measurement error remained approx-
imately constant for each series of experiments over
the entire interval.* This is occasionally the case,
but frequently an experiment—particularly, a ther-
mophysical experiment—is formulated so that it is
@;(x;) rather than Ay; that is kept approximately con-
stant in the x interval. In this case, the processing of
the experimental data should be carried out in accor-
dance with Eqgs. {1a)—(7a), assuming that w; = 1.

*We know that a change in the weights of the indi-
vidual observations by a factor of 2 to 3, as a rule,
has virtually no effect on the magnitudes of the re-
gression coefficients [8]. Therefore, Ay need not be
rigorously constant in the x interval, but may vary
slightly. Not only does such an approximation not con-
tradict theory, but it is justified by its very nature.
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This circumstance is not taken into consideration
in the processing of a thermophysical experiment
[2—71, and thus either leads to errors or to an un-
justifiably great increase in the expenditure of labor
and time, and frequently to both, since in the pro-
cessing of data for which we can assume ¢; = const
on the basis of Egs. (1) ~(7) with w; = 1, unjustifiably
small weights are ascribed to the low values of s
and the small y, have virtually no effect on the mag-
nitudes of the estimates for the regression coefficients.
This becomes particularly apparent in processing data
in which v varies markedly in the x interval (p, p, and
T are functions given in the interval p = 0-p = x,
and pg and Tg are related).

Thus the authors of [4] write: "In order to obtain
approximately identical errors for the approximation
functions, the values of the argument must be speci-
fied nonuniformly, increasing the number of points in
the region of the small values of the functions. In this
case it is impossible to prepare tables of orthogonal
polynomials in advance..." This difficulty could be
avoided by carrying out the procedure according to
(1a)—(7a). 1t is appropriate at this point to note that
in the approximation of any tables by means of equa-
tions it is generally necessary for the approximation
function to retain a certain number of true signs over
the entire interval of the argument. If this approxima-
tion is carried out by the method of least squares, the
calculation has to be carried out on the basis of (1a)—
(Ta) with w;; = 1.

In the work of Michels and his co-workers—devoted
to the calculation of the virial coefficients of CH;, Hj,
and Dy on the basis of pp T data—the calculation is car-
ried out by the method of least squares on the basis of
Egs. (1) =(7) with cw; = 1[2,3], whereas the calcula-
tion should have been carried out on the basis of (1a)-
(Ta) with wy; = 1. Since in the case of low density the
points remained virtually without consideration in the
calculation [2, 3], to obtain stable values for the esti-
mates of the virial coefficients it became necessary to
use data for higher densities and to employ polyno-
mials of higher degreesthan was required for this pur-
pose. In this connection, the authors of [2,3] had to
carry out the calculation on an electronic digital com-
puter, doubling the number of significant places. All
of this resulted in an unjustified and substantial in-
crease in the expenditure of work and time, including
the amount of machine time. Itis clear thatthe authors
of [2, 3] also failed to evaluate the variance of the co-
efficients reliably.

Moreover, in connection with the fact that number
of experimental points on each isotherm is limited, in
the case of low T the condition n > m with respect to
H; and D, [3] was disrupted, making the method of
least squares inapplicable to the processing of these
experimental results. As a consequence of this, at
temperatures T =< 138.16° K, even the third virial co-
efficient for H, was not determined reliably. On the
basis of the data in [3], for T = 138.16° K, it is inde-
pendent of T. However, with proper processing of
these varied data on the basis of (1a)—(7a) this phe-
nomenon is not observed. The deliberate violation of



164

the condition n > m in combination with the correct
processing—which is what we did—for the 98.16° K
isotherm led to values of C(T) close to those obtained
in [3].

It should be noted that the correct evaluation of the
‘weight is particularly significant if the estimates of
the regression coefficients are derived after process-
ing of a theoretical interpretation or if it is the in-
tention to determine the derivatives of the measured
quantity with respect to x from the regression curve
or from the parameters.

Since the final verification of the equations of
state derived in [4-7] was carried out by comparison
against experimental data pertaining to the relative
deviations, the errors characteristic of processing
procedures using (1)—(7) with w; = 1 might apparently
have become evident only in the determination of the
derivatives of the thermal quantities and in the inter-
pretation of the regression coefficients.

NOTATION

yi) is the experimental value of the y function at
point %i; y; is the empirical mean of i-th group of ob-
servation’ x; is the independent variable; w; is the
weight of yiim is the number of measurements at var-~
ious x; T is the temperature; p is the density; p is the
pressure; Ayi is the absolute error in Yis ¢ is the
relative error in i
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